
MATHEMATICS OF COMPUTATION
VOLUME 62, NUMBER 205
JANUARY 1994, PAGES 305-324

DISCRETE WEIGHTED TRANSFORMS
AND LARGE-INTEGER ARITHMETIC

RICHARD CRANDALL AND BARRY FAGIN

ABSTRACT. It is well known that Discrete Fourier Transform (DFT) techniques
may be used to multiply large integers. We introduce the concept of Discrete
Weighted Transforms (DWTs) which, in certain situations, substantially im-
prove the speed of multiplication by obviating costly zero-padding of digits.
In particular, when arithmetic is to be performed modulo Fermat Numbers
22 + 1 , or Mersenne Numbers 2q - 1 , weighted transforms effectively re-
duce FFT run lengths. We indicate how these ideas can be applied to enhance
known algorithms for general multiplication, division, and factorization of large
integers.

1. INTRODUCTION

The utility of transform methods for multiplication of large integers is well
known [1, 11, 12, 16]. The basic idea is to treat the digits of integers, in an
appropriate base representation, as signals upon which we perform transforms.
For general multiplication one often "zero-pads," i.e., appends a sufficient num-
ber of zero digits to each of two signals, so that multiplication is equivalent to
cyclic convolution. This cyclic convolution can be performed via FFTs. Other
techniques are known for negacyclic convolution, which is equivalent to multi-
plication modulo Fermat numbers, as we discuss herein. In the negacyclic case
and in certain other cases one may avoid zero-padding, and hence reduce the
transform run length. The purpose of this paper is to expand on the set of
such cases. Though straightforward "grammar-school" multiplication for inte-
gers having N words each requires O(N2) bit operations, it has been shown
that at least some transform methods require only O(N log N log log N) bit op-
erations [1]. The primary feature of the weighted transform approach herein is
that the implicit 0 constant is reduced in many cases, by virtue of reduced run
length for the transfcrms.

Various combinations of the methods of this treatment have been used to
achieve new results in primality proving, factorization, and other number-
theoretic domains. These empirical results are enumerated in the last section.

2. WEIGHTED TRANSFORMS AND CONVOLUTION

For an integer x having digits x0, x1, . . ., XN I in some base representa-
tion, we define the signal of x as the collection of digits:

Received by the editor July 26, 1991 and, in revised form, April 6, 1992.
1991 Mathematics Subject Classijication. Primary llY1 1, 1 IY05; Secondary 1 IA07, 1 1A5 1,

65T10.

(1994 American Mathematical Societi
0025-5718/94 $1 00 - $ 25 per page

305

306 RICHARD CRANDALL AND BARRY FAGIN

(2.1) x-{xj: 0< jcN}.

For scalars A we define a scalar-signal product by

(2.2) Ax = {Ax1}.

For signals a, x we define a signal-signal product by

(2.3) ax = {ajxj},

and when all signal elements of a are nonzero, we denote an inverse signal by

(2.4) a-1 = {a-- 1}.

Our Discrete Weighted Transform (DWT) is defined by analogy with the usual
Discrete Fourier Transform (DFT). A weight signal a, comprised of N non-
zero constants, is understood. The weighted transform is then taken to be the
signal X whose components are

N-1

(2.5) Xk = Z ajxjgUk ,
j=0

where g is a primitive Nth root of unity in the appropriate domain. The
inverse DWT is

N-1

(2.6) xj = (Naj)-I1E Xkgkj
k=O

To express the straightforward relationship between the DWT and DFT, we use
the following notation to represent (2.5) and (2.6) compactly:

(2.7) X = DWT(N, a)x = DFT(N)ax,

x = DWT 1 (N, a)X = a- 1 DFT- 1 (N)X.

Another simple observation is that weighted transforms become precisely the
DFTs in the degenerate case a = 1, where the signal 1 denotes { 1, 1, . .. , 1 } .

We denote the traditional cyclic convolution of two length-N signals x, y
by the signal x * y, whose components are

(2.8) (x * Y)n Z E XjYk
j+k=n (mod N)

We can isolate key parts of this cyclic convolution by defining, for b = 0 or 1,
the convolutions

(2.9) (x * y) (b) = E Xy

j+k=bN+n

so that

(2.10) x * y = (x y)(?) + (x * y)(

We denote the negacyclic convolution referenced in the literature [11] by x . y,
defined as

(2.11) X.y= (x*y)(0) - (x*y)(1).

DISCRETE WEIGHTED TRANSFORMS 307

Also of interest is a right-angle convolution [8], for which the coefficient of
(x * y)(1) is a square root of -I . TLhe weighted transform approach can be
thought of as a means for introducing general phase factors as coefficients of
the part (x * y)(1) .

Note that acyclic convolution, which is the part (x * y)(0), can be obtained
from the sum of (2.10) and (2.1 1). Similarly, if x, y are both real signals and
complex arithmetic is used, then the acyclic convolution can be obtained simply
as the real part of a right-angle convolution (x * y)(0) ? i(x * y)(1) .

For a constant, length-N nonzero weight signal a understood, we define the
weighted convolution of two length-N signals x, y to be

(2.12) x *a y = a-' ((ax)*(ay)).

In the important cases where the weight signal is generated from a scalar A,

(2.13) aj = Ai,

the weighted convolution takes the simple form

(2.14) X *a y = (x * y)(0) + AN(x * Y)(1).

Given the forward and inverse DWTs (2.5) and (2.6), the appropriate analog of
the classical convolution theorem can be derived in a straightforward manner.
From (2.5), (2.6), and the weighted convolution definition (2.12) one finds

N-1

(x*a y)n = (a-)nN-1 E Xk-Lgkn

(2.15) k=O

-DWT- 1 (N, a)(XY)

= a-DFT'-(N) (DFT(N)ax)(DFT(N)ay)],
the last equality showing explicitly how to compute weighted convolutions via
existing FFT algorithms for the DFTs.

3. MULTIPLICATION VIA WEIGHTED CONVOLUTION OF DIGITS

We require some notation pertaining to digit representations of integers. The
standard representation of a nonnegative integer x, for some fixed base W,
involves digits xj, where

N-1

(3.1) x= E xjW,
j=0

with all digits constrained by

(3e2) 0 < x < W.

In many cases, notably when floating-point FFTs are employed, it is advanta-
geous in practice to adopt a balanced representation, where we assume that W
is even and for which we demand

(3.3) - W/2 < XJ<W/2.
A balanced representatiorn thus involves "bipolar" digits which tend to yield
reduced errors for the convolutions we intend to perform. In the sense of signal
processing theory, the balanced representation involves digit signals x which are

308 RICHARD CRANDALL AND BARRY FAGIN

in some sense "high-pass filtered," with the filter that converts from constraint
(3.2) to constraint (3.3) being generally nonlinear. For one thing, the "DC
component", or mean value of the x signal, is usually significantly smaller in
balanced representation than in the standard representation.

Conversion between standard and balanced representation is not difficult.
To convert from standard to balanced, one may proceed as follows. Starting
at the least significant digit x0, check whether this digit is as large as W/2.
If x0 > W/2, replace x0 with x0 - W and increment x1. Then apply this
"if-subtract-increment" test to x1, and so on, possibly with a final carry into
one extra balanced digit XN = 1 -

We shall have occasion to contemplate variable-base representations of the
form

N-1 j

(3.4) x = Z Xjl Wi = Xo +XIWI +X2WiW2 +*,
j=O i=O

where W0 = 1 and all other Wi take on values from a finite set of even integers.
Cumbersome as such representations might appear, the variable-base approach
has resulted in unprecedented efficiencies for arithmetic modulo large Mersenne
numbers. We define a standard variable-base representation by the constraint

(3.5) 0 < x1 < Wj+I,
and an alternative balanced-variable representation by the constraint

(3.6) -Wj+1'/2 < xj < WJ+1?/2.
When calculations are based on floating-point arithmetic, the functions Floor(.),
Ceiling(.), and Round(.) are important, because various steps of the algorithms
require integer digits at certain junctures. We define the functions as follows.
For integers n,

(3.7) Floor(n) = Ceiling(n) = Round(n) = n.

Otherwise, for z = n + e, where n is an integer and 0 < e < 1,

Floor(z) = n,

(3.8) Ceiling(z) = n + 1,

Round(z) ={Floor(z +1/2), z > 0
Ceiling(z-1/2), z<0.

Note that Floor(.) is not equivalent to the common machine function Trunc(.),
the latter obtained merely by zeroing the fractional part of the mantissa. For
example z = -0.6 has Floor(z) = -1, Ceiling(z) = 0, Round(z) = -1,
Trunc(z) = 0. Inequalities that prove useful for certain weighted convolutiorns
apply for all nonnegative reals a, b, in the form

Floor(a) + Floor(b) < Floor(a + b),
(3.9) Ceiling(a) + Ceiling(b) > Ceiling(a + b).

The Round(.) function is especially important when floating-point FFTs are
used for convolution. In pseudocode descriptions we shall denote the round of
a complex signal as

(3.10) Round(z) = Round(Re(zj)) + iRound(Im(zj)).

DISCRETE WEIGHTED TRANSFORMS 309

Such operations are used to infer correct integer convolution values from com-
plex floating-point results.

In many applications of large-integer arithmetic one generally follows a mul-
tiplication xy by a mod operation. We should mention some known techniques
for fast calculation of integers (modp) when p has special form, for example
p = 2q ? 1. In either respective case, z (modp) can be computed rapidly by
representing z in the form a + b2q and noting z = a - (?b) (modp). One
simply continues this reduction, which can be effected via shifts and adds alone,
until z has a sufficiently small number of bits. Similar tricks apply to negation,
multiplication by powers of two, and so on [7, 15]. As we shall see in ?10,
general mod operations can be efficiently performed via weighted transforms as
long as the denominator remains fixed.

Nomenclature thus established, we can state the central algorithm as follows:

Algorithm W: weighted convolution algorithm for multiplication of x, y.
(1) Choose digit representations x, y, together with an appropriate run

length N and weight signal a.
(2) Compute X = DWT(N, a)x, and Y = DWT(N, a)y.
(3) Compute Z = XY.
(4) Compute z = DWT-1 (N, a)Z. (This is the weighted convolution

X *a y.)
(5) Set z = Round(z), if noninteger (e.g., floating-point) FFTs were used.
(6) Adjust the digits {zn} to the digit representation of choice.

The various types of multiplication we anticipate (direct, polynomial, Fermat-
mod, Mersenne-mod, and so on) will differ only in the choices that occur in
step (1), and in the- digit adjustment, step (6). The steps (2) and (4) require
O(N log N) arithmetic (word) operations, while the signal multiplication (3), as
well as the digit adjustment procedures in (5), (6), require only O(N) arithmetic
operations.

4. FFT MULTIPLICATION FOR INTEGERS AND POLYNOMIALS

Herein we review direct FFT methods with which multiplication in a field
is achieved by cyclic convolution of zero-padded sequences [12]. The signal in
this case is a = 1. For nonnegative integers x, y we adopt representations
of the form (3.1) and assume further that the digit sequences {x;}, {yj} are
zero-padded, in the sense that

(4.1) x;=yj=0 forj>N/2.

The integer product xy is thus
N-1

(4.2) Xy = E E XjYkWn.
n=O j+k=n

Because of the zero-padding, the part (x * y)(l) vanishes, and we may compute
digits of xy according to

N-1

(4.3) xy= (x*y)nWn.
n=O

310 RICHARD CRANDALL AND BARRY FAGIN

Thus, multiplication can be effected via cyclic convolution of the x, y signals.
For integer multiplication, Algorithm W may thus start with the specific para-
phrase:

(1) Represent x, y in base W, with the digits of x, y zero-padded such
that xj = yj = 0 for i > N/2, with run length N appropriate to the available
FFT routines, and choose a = i.

Note that the new digits zn = (x * y)n may violate the representation's digit
constraint, so that some carry operations may be required to adjust (4.3) to a
legal repre;,entation, as in step (6) of Aigorithm W. This adjustment of digits is
especially important when repeated multiplication is contemplated, i.e., when
one wishes to loop back to step (1) many times.

For multiplication of two polynomials x, y, each with integer coefficients,
everything proceeds as in the integer multiplication case, except that less work
is needed: step (6) is not performed. This is because, after step (5), the digits
of z, are in fact the correct integer coefficients of the polynomial product.

For multiplication of two polynomials with all coefficients interpreted (modp)
one would paraphrase step (6) as:

(6) Set z, =- z, (mod p) for n = 0, 1, . . ., deg(x) + deg(y) .
A critical issue in the implementation of large-integer direct FFT multipli-

cation is the choice of FFT algorithm. Define a real-signal FFT as one that
exploits the fact of all original signal elements being real, and a real-result in-
verse FFT as one that exploits the fact of all final signal elements being real. In
practice one has options to which we next devote a few paragraphs.

For N a power of two, use a real-signal FFT in step (2) of Algorithm W,
and a real-result inverse FFT in step (4); for example, the very efficient split-
radix forward and inverse FFTs of Sorensen et al. [19] achieve in practice more
than twice the speed of their conrventional complex-signal Cooley-Tiikey coun-
terparts. Another common technique of taking the FFT of two real signals at
once, using the complex signal {Xj + iyj}, gives better overall performance
than the employment of two separate complex FFTs, but in our experience this
approach is consistently slower than the split-radix real-signal method.

For N again a power of two, use right-angle convolution to avoid zero-
padding at the expense of invoking a complex EFT. We observe from (2.14) that
for weighting constant A = elil(2N) the desired product can be obtained as the
acyclic (real) part of the weighted convoiution, plus WN times the imaginary
part. This approach is of interest when special memory constraints prevent
zero-padding, or when an especially efficient complex FFT routine is available.

For N not a power of two, but rather a produict of small primes to powers, a
Prime Factor Algorithm (PFA) may be suitable. Some striking successes in large-
integer arithmetic have been achieved in this way [4]. In the present treatment
we concentrate throughout on N a power of two; in fact, it is the special feature
of the weighted transform approach that relatively small run lengths N = 2m
can often be used.

Our implementations of direct FFT multiplication, whether in standard or
balanced representation, use word size W = 216. Even though our machines
possess means for arithmetic on 32- or 48-bit integers, the choice W = 216 iS
the largest reasonable word size for the simple reason that convolution errors
attendant to floating-point methods must be kept under control. The problem

DISCRETE WEIGHTED TRANSFORMS 311

of bounding convolution errors is extremely difficult. Though some interesting
general theorems are known on the subject of FFT errors [3], the general results
do not always give a fair picture of the errors obtained in practice. One problem
is the fact of more than one source of error; for example, one suffers from both
roundoff error and errors in the representations of sin and cos. Since convo-
lution errors are not completely understood, some basic emrpirical observations
are of interest. When the weighted convolution is pure real, then in step (5) of
Algorithm W it is certainly necessary that an error bound of the form

(4.4) en = IRe(zn) - (X *a Y)nI < 1/2
hold, lest the operation of Round(.) possibly give incorrect convolution values.
For floating-point arithmetic with Q-bit mantissa resolution, on the assumption
that sin(.) and cos(.) mantissas be correct to Q - 1 bits, our numerical work
suggests that some bound of the form
(4.5) en < c2-QW2 N3/2logN
might hold for a universal constant c 1 when standard digit representation
is used. Furthermore, when balanced representation is used, it appears that a
much better bound, better by a factor of vN, may hold in the form
(4.6) en < c'2-Q W2Nlog N.
Again, these bounds are conjectural, and based only on a finite set of experi-
ments. It is reasonable, though, that the error bound for balanced representation
be tighter, because the balanced digits should in some average sense behave as
distributed bipolar values, giving rise to some error cancellation in the final
convolution. In fact, we found that on a Cray YMP, with floating-point FFT
routines involving 48-bit floating-point numbers, the standard representation is
useless (i.e., en exceeds 0.5 in some cases) for W = 216 and multiplicands hav-
ing more than 218 bits. But balanced representation on this machine appears
to allow accurate multiplication with 2000000 bits per multiplicand. For 64-bit
floating-point mantissa resolution and fixed word size W = 216, direct FFT
multiplication appears sufficiently accurate for general integers x, y having up
to 221 bits each in standard representation. When balanced representation is
used, the 64-bit floating-point machines can perform this multiplication on inte-
gers having up to 224 bits. In spite of the lack of rigorous results concerning the
conjectures (4.5), (4.6), it appears that programs should always avoid standard
representation when such avoidance is possible.

The fact of flioating-point convolution errors is unfortunate, and may be dis-
comforting to the reader. There are at least two sources of relief on this issue.
First, in factoring experiments per se, a discovered factor can immediately be
tested as a divisor, so that floating-point errors in any intermediate stages are ir-
relevant. Second, there exist errorless, integer convolutions, examples of which
we discuss in ?8. One approach is to write very fast floating-point routines, in
this way obtaining results, then checking these results at critical junctures with
rigorous integer routines.

Finally, one may drastically increase error margins by doing an error-correc-
tion side calculation. One may compute, in addition to the main convolution,
the same convolution (mod B), where B is some convenient small integer such
as 256, and in this way relax the constraint (4.4) to

312 RICHARD CRANDALL AND BARRY FAGIN

This method works because the word size B, when significantly less than W,
gives rise to much less error, as expected on the basis of a heuristic relation
(4.5) or (4.6). In this way one may use the components of a sufficiently reliable
(mod B)-convolution to force the values of the less reliable components of the
main convolution.

5. FERMAT NUMBERS AND NEGACYCLIC CONVOLUTION

Here we describe in detail a situation, discovered in essence by Sch6nhage
and Strassen [16], in which negacyclic convolution may be used to avoid zero-
padding of digits, resulting in a halving of the run length that was required by
the direct FFT method. The Fermat numbers are defined by

(5.1) F = 22m+1.

Multiplication modulo Fm may be effected as follows. Adopt a fixed base W
which divides Fm - 1, say W = 22 n/N. Represent integers x, y (mod Fm),
neither of which = -1 (mod Fm), as in (4.1). It is assumed that the extraneous
cases where some key integer = - 1 (mod Fm) can be handled by simple means.
Note that we shall not be zero-padding the signals in the present case. Indeed,
since WN = -1 (mod Fm), it follows that

N-1

(5.2) Xy=E(X.y)nWn (modFm).
n=O

In other words, the digits of xy (mod Fm) can be taken to be components of
the negacyclic convolution of x and y as defined by (2.1 1). As before in the
direct FFT method, a reduction of these digits to the current representation of
choice it usually, required.

The weighted transform concept comes into play as follows. Set aj = Ai,
where A is an Nth root of - 1. When floating-point FFTs are to be used,
A = e?il/N will suffice. The first step in Algorithm W appropriate to this
negacyclic case is:

(1) Choose a base W = 22m/N, where N will be the run length, and define the
signal a = {Ai}, where A = e-i/N . Represent x, y in base W, zero-padding
only to N digits inclusive.

One might attempt to argue that the weighted transform approach gives no
net advantage, by observing that the direct FFT method of ?4 involved zero-
padding, but allowed real-signal FFTs, whereas a transform such as

N-1

(5.3) Xk = E xje- ii/Ne-27iik/N
j=O

though enjoying half the run length, is nevertheless a complex-signal transform.
The- avoidance of zero-padding, this argument goes, would be offset by the need
for complex transforms in place of the faster real-signal transforms. This argu-
ment fails, for the simple reason that transforms of the type (5.3) can actually
be effected in terms of real-signal transforms of length N, with only a few
extra operations that do not affect the asymptotic run time. Define a special
transform

N-1

(5.4) = 2 E3 xj cos(7rj/N)e22ik/N,
j=O

DISCRETE WEIGHTED TRANSFORMS 313

which can, after O(N) cos(.) multiplications, be computed as a real-signal FFT.
It should be mentioned that this special transform is, strictly speaking, not a
weighted transform because the weight signal {cos(7rj/N)} is not invertible.
Noting the identity

(5.5) Xk =Xk + Xk-

and the fortuitous symmetry

(5.6) Xk = X>-k-

we may obtain XO directly from (5.3), then use the recursion

(5.7) X1 =X1 - XO, X2 =X2 -Xl,

so that, indeed, the DWT (5.3) can be obtained from a real-signal FFT and
O(N) extra operations. In fact, for actual multiplication we only need compute
Xk and Yk for 0 < k < N/2, because the symmetry (5.6) determines the rest
of the components. Similarly for the final, inverse transform, we can compute
the negacyclic components

N-1

(5.8) Zn = (x * Y)n = e27in/NN 1 E Xk Yke?+27ikn/N
k=O

via a real-result inverse FFT:
N-1

(5.9) (2 cos(7rn/N))zn = N1 E (XkYk + Xk-l Ykl)e+27t1kn/N
k=O

when n 0 N/2, and obtain the single missing component from the side calcu-
lation

N12-1

(5.10) ZN/2 = -2N-1 Jm(XkYk)(_I)k.
k=O

In summary, multiplication modulo Fermat numbers may be effected without
zero-padding, with a genuine gain, in the form of halved run length, through
the use of real-signal FFTs and real-result inverse FFTs.

It is even possible to cut down the run length to 1/4 of that required for
the direct FFT approach. In this case complex-signal FFTs must be used, but
the method is called for in situations where, for example, a very fast complex
FFT is available (more precisely, when the add-carry operations are relatively
expensive in comparison to the FFTs). As before, let the fixed word length be
W = 22 /N, but now represent an integer x by a complex equivalent,

N/2-1

(5.11) x' = E (Xj + iXj+N/2)Wi,
j=0

and employ an analogous representation for an integer y. Define a new run
length N' = N/2, and posit a constant length-N' signal a = {AJI}, where
AN' - i. It is straightforward to show that

N'-1

(5.12) X'y/ = Z (Xf*a Y)nWn (mod Fm),
n=O

314 RICHARD CRANDALL AND BARRY FAGIN

where the weighted convolution is, in view of the present definition of A, a
right-angle convolution:

(5.13) x/ *a y -(x/ * yt)(0) + i(x' * y/)(1).

Algorithm W for this case requires step (1) to read:
(l) Choose a base W - 22m/N, where N' = N/2 will be the run length, aind

define the signal a = {Ai}, where A = e i/(2N'). Represent x, y as having N'
complex digits, each in base W, as in (5.1 1), zero-padding only to N' complex
digits inclusive.

It should be kept in mind that in steps (5) and (6) the digits {fz, } are generally
complex.

In summary, this algorithm has 1/4 the run length of the direct FFT method,
but necessarily involves complex FFTs. We have found this approach to be
effective on Cray machines, for which vectorized, optimized complex FFTs are
available, and for which the carry adjustments on step (6) are difficult to vec-
torize.

6. MERSENNE NUMBERS AND IRRATIONAL BASES

For p = 2q - 1, we consider multiplication (mod p). An interesting obser-
vation is that binary multiplication of two integers x, y (modp) is equivalent
to cyclic convolution of bits. If we adopt a binary representation

q-1

(6.1) x = Ex2i2,
j=0

and an analogous form for y, then, because of the fact that 2q = i (mod p),

q-1

(6.2) xy = -(x*y),2n (mod p).
n=O

Elegant though this equivalence of bitwise cyclic convolution and multiplication
(modp) may be, there are two reasons why the scheme is impractical. First,
most machines are relatively inefficient in performing one-bit multiplication;
and second, any FFT methods for the convolution must involve length-q sig-
nals. In many interesting cases, q is prime, and although prime-length FFTs
can be performed via established methods, such FFTs for large q are not gener-
ally competitive with fast transforms for comparable but highly composite run
lengths.

We have been able to circumvent these drawbacks of bitwise convolution by
employing weighted transforms to perform arithmetic with respect to irrational
bases. The new method is based on the observation that, if we could generalize
the representation (6.1) to

N-1

(6.3) X =Exj2qiN
j=O

with an analogous representation for y, then in spite of the general irrational-
ity of the digits xj, yj we can write xy (modp) again in terms of a cyclic

DISCRETE WEIGHTED TRANSFORMS 315

convolution, this time of length N:

N-1

(6.4) xy =E(x * y),2qn/N (modp).

Of course, we cannot normally handle irrational representations exactly by com-
puter, but weighted transforms and floating-point arithmetic can be brought to
bear in order to compute convolu^tions such as (6.4) with sufficient accuracy.
We adopt an integer representation, but with variable base as in (3.4),

N-1

(6. 5) x- S Xj 2Ceiling(qj/N)

j=0

The word sizes are Wj = 2b1, with the number of bits allocated for digit xj1
being

(6.6) bj= Ceiling(qj/N) - Ceiling(q(j - 1)/N).

From (3.9) it follows that for given q and run length N the bj take on at
most two possible values, namely Ceiling(q/N) or Floor(q/N). An appropriate
weighted convolution proceeds on the basis of the constant signal a defined by

(6.7) a1 - 2Ceiling(qj/N)-qj/N

which in practice will be approximated by a floating-point number always lying
in the interval [1, 2). Assuming the representation (6.5) for an integer x, and
tlle analogous representation for an integer y, we have

N-1

xy= E ((ax) * (ay))n2qnlN (modp)
(6.8) n=O

N-1

= E (x *a Y)2Cei1ing(qn/N) (modp).
n=O

Thus, the digits of the weighted convolution X*a y will serve in the variable-base
representation of xy (mod p) . The reason for using the Ceiling(.) function and
the particular definition (6.7) for the components of a now becomes evident,
as we observe that each convolution component (x *a Y)n in (6.8) must be an
integer. Indeed, this component always takes the form

(6. 9) XjYk 2Ceiling(q j/N)+Ceiling(qk/N)-Ceiling(qn/N)

with j + k = n (mod N). By (3.9) it follows that the exponent of 2 in (6.9) is
always 0 or 1. This means that our usual rounding techniques can be used to
ascertain exact integer values for the weighted convolution, assuming that the
floating-point arithmetic is sufficiently precise.

Algorithm W for multiplication of integers x, y (mod p), where p - 2q _ 1,
via weighted convolution of this type may now proceed with a specific step (1):

(1) Choose run length N > q and establish bit-sizes bj for digits according
to (6.6). Represent x = {xj}, y = {yj} according to (6.5), zero-padding only to
N digits inclusive. Compute the components of the weight signal a according
to (6.7).

316 RICHARD CRANDALL AND BARRY FAGIN

The digit representations rmay be either standard-variable or balanced-variable
type. One simply sticks to a consistent constraint (3.5) or (3.6) in steps (1) and
(6). Our most powerful Mersenne-mod routines use balanced-variable repre-
sentation to cut down the overall convolution errors.

Since the variable-base representations are not common ones for program-
mers, a brief worked example of the multiplication algorithm is in order. Let

(6.10) q=37, p-237-1, N=4.

The bit-sizes from (6.6) are

(6.11) {bj}={10, 9, 9, 9}.

Let us use the algorithm to square the number x = 78314567209 (modp). In
the first step of Algorithm W we determine

(6.12) x= {553, 93, 381, 291}.

Note, for example, that 553 is indeed a 10-bit number and that the other three
digits are 9-bit numbers. The constant signal is computed as

(6.13) a= {1, 23/4, 21/2, 2/4}.

After step (4) we find a typical floating-point representation of the z signal:

(6.14) z= {704383., 324600., 523365.0000000001, 463577.9999999999}.

The rounding in step (5) gives us integer digits for the convolution components
in (6.8). Adjustment for proper constraints on digit sizes are to follow, but we
can see that the- weighted convolution has given the correct product (modp).
Indeed, it is easy to check that
(6.15)
783145672092

= 704383 + 324600 * 210 + 523365 * 2'9 + 463578 * 228 (mod 2 - 1).

7. CHINESE REMAINDER METHODS

The weighted convolutions of the last two sections, suitable for specific
Fermat- or Mersenne-mod cases, can sometimes be used together to enhance
general multiplication routines. Assume, for example, that each of x, y has
2n + s digits in a fixed, even base W, with 0 < s < 2mn- . The required
zero-padding of the direct FFT method of ?4, for power-of-two run length N,
implies a minimum run length N = 2m+2. That is, each of x, y must be zero-
padded to length 2m+l, and further zero-padded to run length 2m+2 . Because
of the assumed constraint on s, we have the option of using the methods of
??5, 6 respectively, to compute two integers

(7.1) u=xy (mod W2m+' + 1), v =xy (mod W2M-1),

and, because the product xy has at most 3 * 2m nontrivial digits, to reconstruct
the exact product using (7.1) and the Chinese Remainder Theorem (CRT). Since
W is even, the two modulus bases in (7.1) are relatively prime, whence

(7.2) 2xy = u + v + W2`1 (v - u) (mod(W2m+1 + 1)(W2m _ 1)).

DISCRETE WEIGHTED TRANSFORMS 317

The mod operation in (7.2) may be effected using the same principles that allow
fast Fermat- and Mersenne-mod arithmetic; namely, a few shift and add oper-
ations generally suffice to perform the mod. Thus, for example, two 1500-digit
base-W integers may be multiplied using a length-2048 negacyclic convolution
(for u) and a length-1024 cyclic convolution (for v). This amounts to a no-
ticeable speed improvement over the direct FFT method, which would require
a length-4096 cyclic convolution.

A different, "microscopic" CRT approach is to attempt parallelism by com-
puting weighted convolution components modulo distinct primes Pi. One might
use a separate processor for each Pi. One might further demand that each Pi
possesses a primitive root gi of order N, and also that each Pi admits of
a suitable weight signal ai; then calculate a weighted transform (2.5) mod-
ulo each pi. Weighted convolution elements from (2.15) will then be known
modulo each respective pi, and can be reconstructed efficiently using known
"pre-conditioning" algorithms for the CRT calculation [1]. To achieve unam-
biguous reconstruction, one must use enough primes so that 7rpi exceeds the
largest possible convolution component. Component bounds are discussed in
the next section.

8. NUMBER-THEORETIC WEIGHTED TRANSFORMS

Traditional number-theoretic transforms, which by avoiding floating-point
arithmetic provide exact integer convolutions, can be given weighted counter-
parts. Let integers x, y be expressed in balanced representations of the type
(3.1), so that constraint (3.2) applies. Both cyclic and negacyclic convolutions
then satisfy the inequality

(8.1) I(x *a Y)nl < N W2/4

for each n = 0, 1, .. , N - 1 . Consider number-theoretic weighted transforms
(2.5) based on arithmetic over a finite commutative ring R with unity. A
practical special case is

N-1

(8.2) Xk = Z xjAJgjk,

j=O

where A is invertible in R and g is a primitive Nth root of unity in R. We
may take A = 1 for the cyclic case, or A is a primitive Nth root of (-1) for
the negacyclic case. In this negacyclic case it suffices to use g = A2 . When we
use a finite field R = GF(p) for a prime p sufficiently large that

(8.3) NW2/4 < p12,
then weighted transforms of the type (8.2), with all arithmetic performed
(modp), can be used to determine unambiguously the (possibly bipolar) con-
volution elements. Bounds sharper than (8.3) may be derived, especially if
zero-padding of digits or special symmetries are taken into account.

A popular choice [8, 9] is p = Fm = 22m + 1. The resulting Fermat Number
Transform (FNT) has attractive features but one major drawback. The advan-
tages of the FNT lie in one's ability to perform (8.2) (with the generating scalar
A equal to a power of 2) on the basis of shift and add operations alone, while
the drawback is that maximum allowable FNT run lengths are quite limited.

318 RICHARD CRANDALL AND BARRY FAGIN

An FNT example runs as follows. Start with W = 216, N = 64, so that cyclic
or negacyclic convolution are desired for x, y each having at most 1024 bits.
Since NW2 = 238, it suffices by (8.3) to choose p = F6 = 264 + 1. Choose
A = 2, which is a 64th root of (-1) (modF6), and g = 4. Then weighted
transforms

63

(8.4) Xk = xj24j (modF6)
j=O

may be used to compute negacyclic convolutions appropriate to original integers
x, y having at most 1024 bits each. Clearly, (8.4) or its even simpler cyclic
analog can be effected via shift, add, and Fermat-mod operations without any
explicit multiplication required.

Because of the restrictions on FNT run length, it is somewhat difficult to
perform exact multiplication of integers having, say, hundreds of thousands of
bits in this way. However, there are multidimensional techniques that circum-
vent this problem somewhat [6, 9]. Luckily, there are other options. Consider
what we shall call Galois Transforms, for which the expressions such as (8.2)
are to be evaluated in GF(p2), where p = 2q- 1 is a Mersenne prime. These
transforms [13, 15] take due advantage of two facts. First, for arithmetic in
GF(p2) we can assume that every field element is a + bi, with all real and
imaginary components reduced (modp) at every stage. Second, the order of
the multiplicative group is p2 _ 1 = (p + 1) (p - 1) , which is divisible by 2q+1
thus allowing in practice enormous power-of-two run lengths.

Let h be a primitive multiplicative 2q+1th root of 1 in GF(p2). For r < q
let

(8.5) N = 2, A = h(P- 1)2-l , g = A2.

Since AN = -1 , length-N cyclic (where A is simply omitted from (8.2)) or
negacylic digit convolution may proceed, under the constraint (8.3). If r is
strictly less than q, then the choices

(8.6) N = 2r A A = h(P-I)2q-r-2 g = A4

allow right-angle convolution, because AN is now a square root of (-1). In
this case the acyclic convolution is just the real part of the weighted convolution.

By a theorem of Creutzburg and Tasche [5] one can obtain closed-form ex-
pressions for primitive roots in GF(p2). For example,

(8.7) h = 2 + (-3)2q2i

is always a primitive multiplicative 2q+ 1th root of 1. From (8.5) we can attempt
run lengths as powers of two up through 2q for cyclic or negacyclic convolution.
An interesting further observation is that gg* = 1 (modp), so that the afore-
mentioned techniques for real-signal and real-result transforms may be applied
to the weighted cases (8.2), in view of appropriate symmetries of X.

A useful example of Galois Transform applications arises when p is the
Mersenne prime 261 - 1 . For fixed base W - 216, one may, by virtue of (8.3),
contemplate run lengths up to the impressive size of N= - 27 digits. Programs
for weighted convolution can be realized by starting with a single primitive root
such as

(8r8) h - 2147483648 + 1033321771269002680 i,

DISCRETE WEIGHTED TRANSFORMS 319

then using relations (8.5) or (8.6) to handle specific run lengths 2r. Say that we
wish to multiply two integers, each having < 1 million bits. We may proceed
with right-angle convolutions as follows. Make, according to (8.6), the choices

N -216,

(8.9) A - h(P-)243 - 1973234539278172120+ 1244201103777839971 i,

g = A4 = 1510466207055935382 + 120042544849731353 i,

for which one may verify that AN - i and thus gN- 1 in GF(p2). Then
(8.2) and the weighted convolution formula (2.15) can be used to compute the
nth digit of xy as Re((x*a Y)n) for n < N, and Im((x*a Y)n-N) for n > N.
Though complex FFTs with 64-by-64 bit high-precision multiplies are called for
in this example, it is guaranteed by (8.3) that the multiplication is exact, devoid
of the errors attendant to floating-point methods.

9. APPLICATIONS TO FACTORIZATION METHODS

The weighted transform approach can sometimes be used to enhance modern
factorization algorithms when the number N to be factored (not to be confused
with run length in this section) is sufficiently large. The idea is to use transform
methods to resolve certain algebraic forms. By storing precoinputed transforms,
one may effectively reduce the total number of required multiplications for these
forms.

A first example is a calculation that occurs in most implementations of the
"second stage" of the Pollard (p - 1) Method or the Elliptic Curve Method
(ECM) [10]. One accumulates products of the form

(9.1) r= fl(x1 -xj) (modN),
i<j

where integers xI, x2, ..., xn have been stored, and computes GCD(r, N),
hoping for a factor of N. If one computes r by successively calling a DWT-
based general multiply routine, then (n - 2)(n + 1)/2 multiplies, hence
3(n - 2)(n + 1)/2 transforms, will be required. But by storing transforms
appropriately, we can cut the asymptotic 3n2/2 transform count down to
n2, as follows.

Algorithm for computing products (9.1) by storing transforms.
(1) Let xi denote the signal corresponding to the digits of integer xl, and

compute and store signals Xi = DWT(N, a)xi, where a is appropriate to the
problem of multiplication (mod N).

(2) Set r = 1.
(3) To introduce a new term (xi - xj) into the product for r, set r =

DWT-'(N, a)[(X, - Xj)(DWT(N, a)r)], and recover r from r by adjusting to
the representation of choice (mod N). Repeat this step (3) until all terms are
introduced into the product.

It is not hard to see that (9.1) can be computed in this way, with a total of
n2 - 3 DWTs (inverse transforms included), for an overall gain of 3/2 in the
asymptotic run time.

320 RICHARD CRANDALL AND BARRY FAGIN

As a second example, we analyze some ECM arithmetic. The inversionless
parametrization of ECM due to Montgomery [10] uses the elliptic curve

(9.2) By2 - x3 + Ax2 + x (mod N).

One assumes an initial rational point (x, y) = (ul/vl, Yl), where Yi is not
needed in the calculation, and uses such formulae as

(9.3) Um+n = Vmn(UmUn - VmVn)2 (mod N),

Vm+n Um-n(Umvn - VmUn)2 (rmod N)

to obtain the x-coordinate of (m+n)(uI/v 5 Yi) when m 7 n, with a different
(doubling) formula that applies when m = n. In this approach one computes
certain multiples k(ul/vl, Yi) and continually checks GCD(vk, N), hoping
for a factor of N. As Montgomery points out, the computation (9.3) requires
8 multiplications and some additions. The multiplications would involve 24
DWTs if a general weighted convolution multipiication routine were system-
atically called. If we exploit the fact that squares require only 2 DWTs, then
(9.3) will require 22 transforms. This cost of 22 transforms can be reduced
further, in the following way. First, compute four transforms DWT(N, a)um,
DWT(N, a)un, DWT(N, a)vm, DWT(N, a)vn . Then each square in (9.3) can
be computed with three transforms, and, because the transforms of um-n, Vm-n
can have been stored, four more transforms will yield the desired final values
in (9.3). Thus, a total of 14 DWTs can be employed to resolve (9.3). In this
wav, ECM arithmetic can be sped up by factors > 3/2.

As intimated in ? 1, these methods for improving factorization times will
provide genuine improvement when N has some thousands of binary bits, the
precise magnitude of N at which weighted transform methods prevail being
machine-dependent.

10. GENERALIZED FAST MOD

In this section we show that transform methods can be used to compute mod
operations, for sufficiently large fixed denominator N, in at most twice the
time required for the general multiplication of two (mod N) integers. Such a
situation obtains, for example, when N is a number to be factored, and each
mod operation x (mod N) proceeds for the fixed N, with 0 < x < N2 . The
mod problem can be reduced to successive evaluations of Floor(x/N). Given
a Floor(.) evaluation, one may perform mod operations simply according to

(10.1) x (mod N) = x - N Floor(x/N).

The idea is to compute and store a kind of reciprocal of the fixed denominator
N. Let 2b > N2 and define c = Ceiling(2b/N) = 2b/N + e, where 0 < e < 1.
Then

(10.2) xc/2b = x/N + xe/2b,

from which it follows that

(10.3) Floor(x/N) = Floor(xc/2b) - d

where d = 0 or 1. Thus, a mod operation may be performed using

(10.4) x (mod N) = x - NFloor(xc/2b) + dN.

DISCRETE WEIGHTED TRANSFORMS 321

In this way the generalized mod operation is brought down to multiplications
xc, simple bit-shifting, and a multiplication by N, with a trivial adjustment
required to determine whether d = 0 or 1. The appeal of this approach is that
transforms of the digits of N and of c can be determined just once.

Algorithm for computing successive values x (mod N) for fixed N, 0 < x <
N2 .

(1) Choose b such that 2b > N2, and compute c = Ceiling(2b /N), for
example by a Newton method. Compute and store a transform C of the digits
of c, and a transform N of the digits of N.

(2) For each successive x, compute a transform X of the digits of x; then
use C and an inverse transform to determine xc and thus z = Floor(xc/2b) .

(3) Obtain the transform Z of the digits of z, and use this with the N-
transform to determine x = x - Nz.

(4) (Determination of d) If x < 0, set x = x + N.

Let us assume, as in ?4, that general FFT multiplication of two (mod N)
integers takes asymptotic time 3T, where T is the time for one relevant trans-
form. The two transforms in step (2) will consume a total time of 4T, since
x contains about twice as many digits as does N. But in step (3), there will
be two transforms each taking time T. Thus the algorithm should require ap-
proximate time 6T, amounting to twice the time for a general multiplication.
In some situations the CRT technique of ?7 can be used to further reduce the
time in step (2), since c will usually have about half as many digits as does x.

11. RESULTS TO DATE

In this final section we describe numerical results obtained by the authors
and collaborators. Some of these results are merely empirical data, intended to
aid future researchers in checking methods and programs.

(1) Our implementation of direct FFT multiplication for general integers,
on a 68040-based NeXTstation, surpasses the efficiency of straightforward
"grammar-school" multiplication when the magnitude of (roughly equal) in-
tegers to be multiplied crosses the region of - 5000 bits. When arithmetic
is to proceed modulo Fermat or Mersenne numbers, the crossover occurs at
approximately 2000 bits per multiplicand, because of the advantages of DWT
methods.

(2) The reader may have interest in an empirical assessment of the improve-
ment to be realized with balanced digit representations. We computed the
floating-point convolution errors for random squares (mod 2524287 - 1), as one
might do to decide whether M524287 is prime. On a 64-bit mantissa machine,
using the direct method with zero-padding, we found that the error en of (4.4)
has a typical value of 0.01 for standard representation, and 0.0001 for balanced
representation.

(3) Methods described herein, together with the Elliptic Curve Method
(ECM), enabled us to find two 19-digit factors of F13 = 223 + 1, both veri-
fied by Wagstaff [20]. It is now known that

F13 = 2710954639361 * 2663848877152141313 * 3603109844542291969 * c,

where c is a 2417-digit composite.

322 RICHARD CRANDALL AND BARRY FAGIN

(4) Implementation of transform multiplication and Mersenne-mod arith-
metic has enabled us, using variants of the Pollard (p - 1) method, to determine
factors

3085953375452873 of M320213 = 2320213 - 1,

34013668352159 of M500113 = 2500113 1,

13364077516908463 of M500249 = 2500249 - 1.

(5) Using FFT multiplication and balanced digit representation for polyno-
mial multiplication (modp), Buhler et al. [2] found all irregular prime pairs
(p, 2k) for all primes < 106. The data establish the truth of Fermat's "Last
Theorem" for all exponents less than one million. The method involves the
polynomial multiplication described in ?3, together with a technique for resolv-
ing Bernoulli numbers (modp) by reciprocating huge polynomials (modp).
Error-correction techniques, used to augment floating-point transforms with
B = 65536 in (4.7), proved sufficient to settle regularity criteria for even larger
primes p 107; for example, it is now known that 8388013 and 8388019
are regular primes, with each case requiring about 2 CPU hours on a 68040-
based NeXTstation. The irregularity calculations are now being pressed in a
systematic way for primes up to four million.

(6) In attempts to discover new Mersenne primes, a network group [18] has
employed various DFT and DWT methods. In particular, using the DWT ap-
proach of ?6, one may compute random squares x2 (modp), where p is the
Slowinski prime 2216091 - 1, in CPU times:

I second, 68040 NeXTstation,
0.07 second, Connection Machine 8K,
0.02 second, Cray YMP,

whereas the less efficient direct FFT method takes for example 3 seconds on
the NeXTstation and 0.3 seconds on the Connection Machine. The factor
of 3 or 4 improvement for the weighted transform approach is due primarily to
the automatic gain of 2 arising from the halving of the requisite run length of
the internal FFTs. No new Mersenne primes have been found as of this writ-
ing, although the entire region 430000 < q < 524288 has been systematically
resolved (no new Mersenne exponents were found).

(7) The current largest explicit prime, 2756839- 1 , recently found by Slowinski
and Gage [1 7] was verified by D. Smitley, J. Doenias, and one of the authors
(REC) as indeed prime, in March 1992, at the request of the original discoverers.

At Slowinski's request, a new, even larger prime was verified, using DWT
methods, by Doenias and Crandall; said prime to be announced.

(8) Whether the twenty-second Fermat Number F22 is prime is a question
that is definitely accessible on machines of today, on the basis of the Fermat-
mod techniques herein. We have programmed the appropriate Pepin test, in
which about 222 squares must be performed (modF22). We find that Cray
machines perform a typical such square in less than 1 second, even though we
found the error-correction technique of ?3 necessary. The entire primality test
for F22 will consume roughly 600 CPU hours-not an unreasonable amount
of time. We have not performed a full run on F22, but at this point the issue

DISCRETE WEIGHTED TRANSFORMS 323

is plainly that of availability of machine cycles. We note that the composite
character of F20 has been settled by direct FFT methods [21].

ACKNOWLEDGMENTS

We are indebted to Joseph Buhler, Department of Mathematics, Reed Col-
lege, for his work on recursive large-GCD and other algorithms, and to Joshua
Doenias of NeXT Computer, Inc., for his various program implementations of
the weighted transform method. We wish to acknowledge the aid of Robert
Silverman, Samuel Wagstaff, and Peter Montgomery on various factorization
and verification issues. We are likewise indebted to our informal prime-search
network group called "Gang-of-Nine" [1 8], out of which have emerged various
ideas fundamental to this paper. We are grateful to a reviewer who indicated
substantial improvements to the manuscript. Many of the empirical results
herein were made possible by a grant from the San Diego Supercomputer Cen-
ter.

BIBLIOGRAPHY

1. A. Aho, J. Hopcroft, and J. Ullman, The design and analysis of computer algorithms,
Addison-Wesley, Reading, MA, 1974.

2. J. P. Buhler, R. E. Crandall, and R. W. Sompolski, Irregular primes to one million, Math.
Comp. 59 (1992), 717-722.

3. D. Calvetti, A stochastic roundofferror analysis for the Fast Fourier Transform, Math. Comp.
56 (1991), 755-774.

4. K. Chen, A New Record: The largest known prime number, IEEE Spectrum 27 (1990), 47.
5. R. Creutzburg and M. Tasche, Parameter determination for complex number-theoretic trans-

forms using cyclotomic polynomials, Math. Comp. 52 (1989), 189-200.

6. B. Fagin, Large integer multiplication on hypercubes, J. Parallel Distrib. Comput. 14 (1992),
426-430.

7. L. Leibowitz, A simplified arithmetic for the Fermat number transform, IEEE Trans. Acoust.
Speech Signal Process. 24 (1976), 356-359.

8. W. Li and A. Peterson, FIR filtering by the modified Fermat number transform, IEEE Trans.
Acoust. Speech Signal Process. 38 (1990), 1641-1645.

9. J. McClellan and C. Rader, Number theory in digital signal processing, Prentice-Hall, En-
glewood Cliffs, NJ, 1979.

10. P. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math.
Comp. 48 (1987), 243-264.

11. H. Nussbaumer, Fast Fourier and convolution algorithms, Springer-Verlag, Heidelberg, 1982.
12. J. M. Pollard, The fast Fourier transform in a finite field, Math. Comp. 25 (1971), 365-374.

13. F. P. Preparata and D. V. Sarwate, Computational complexity of Fourier transforms over
finite fields, Math. Comp. 31 (1977), 740-751.

14. G. U. Ramos, Roundofferror analysis of the fast Fourier transform, Math. Comp. 25 (1971),
757-786.

15. I. Reed and T. Truong, The use offinite fields to compute convolutions, IEEE Trans. Inform.
Theory 21 (1975), 208-213.

16. A. Schonhage and V. Strassen, Schnelle Multiplikation groJ3er Zahlen, Computing 7 (1971),
28 1-292.

17. D. Slowinski and P. Gage, private communication (1992).

18. D. Smitley, R. Crandall, B. Fagin, W. Colquitt, R. Frye, J. Buhler, J. Doenias, D. Slowinski,
and R. Silverman, "Gang of Nine" network group for Mersenne prime search, 1990-1992.

324 RICHARD CRANDALL AND BARRY FAGIN

19. H. V. Sorenson et al., Real-valued fast Fourier transform algorithms, IEEE Trans. Acoust.
Speech Signal Process. 35 (1987), 849-863.

20. S. Wagstaff, private communications, 1991.
21. J. Young and D. Buell, The twentieth Fermat number is composite, Math. Comp. 50 (1988),

26 1-263.

SCIENTIFIC COMPUTATION GROUP, NEXT COMPUTER, INC., REDWOOD CITY, CA 94063

THAYER SCHOOL OF ENGINEERING, DARTMOUTH COLLEGE, HANOVER, NEW HAMPSHIRE 03755

