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DISCRETE WEIGHTED TRANSFORMS 
AND LARGE-INTEGER ARITHMETIC 

RICHARD CRANDALL AND BARRY FAGIN 

ABSTRACT. It is well known that Discrete Fourier Transform (DFT) techniques 
may be used to multiply large integers. We introduce the concept of Discrete 
Weighted Transforms (DWTs) which, in certain situations, substantially im- 
prove the speed of multiplication by obviating costly zero-padding of digits. 
In particular, when arithmetic is to be performed modulo Fermat Numbers 
22 + 1 , or Mersenne Numbers 2q - 1 , weighted transforms effectively re- 
duce FFT run lengths. We indicate how these ideas can be applied to enhance 
known algorithms for general multiplication, division, and factorization of large 
integers. 

1. INTRODUCTION 

The utility of transform methods for multiplication of large integers is well 
known [1, 11, 12, 16]. The basic idea is to treat the digits of integers, in an 
appropriate base representation, as signals upon which we perform transforms. 
For general multiplication one often "zero-pads," i.e., appends a sufficient num- 
ber of zero digits to each of two signals, so that multiplication is equivalent to 
cyclic convolution. This cyclic convolution can be performed via FFTs. Other 
techniques are known for negacyclic convolution, which is equivalent to multi- 
plication modulo Fermat numbers, as we discuss herein. In the negacyclic case 
and in certain other cases one may avoid zero-padding, and hence reduce the 
transform run length. The purpose of this paper is to expand on the set of 
such cases. Though straightforward "grammar-school" multiplication for inte- 
gers having N words each requires O(N2) bit operations, it has been shown 
that at least some transform methods require only O(N log N log log N) bit op- 
erations [1]. The primary feature of the weighted transform approach herein is 
that the implicit 0 constant is reduced in many cases, by virtue of reduced run 
length for the transfcrms. 

Various combinations of the methods of this treatment have been used to 
achieve new results in primality proving, factorization, and other number- 
theoretic domains. These empirical results are enumerated in the last section. 

2. WEIGHTED TRANSFORMS AND CONVOLUTION 

For an integer x having digits x0, x1, . . ., XN I in some base representa- 
tion, we define the signal of x as the collection of digits: 
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(2.1) x-{xj: 0< jcN}. 

For scalars A we define a scalar-signal product by 

(2.2) Ax = {Ax1}. 

For signals a, x we define a signal-signal product by 

(2.3) ax = {ajxj}, 

and when all signal elements of a are nonzero, we denote an inverse signal by 

(2.4) a-1 = {a-- 1}. 

Our Discrete Weighted Transform (DWT) is defined by analogy with the usual 
Discrete Fourier Transform (DFT). A weight signal a, comprised of N non- 
zero constants, is understood. The weighted transform is then taken to be the 
signal X whose components are 

N-1 

(2.5) Xk = Z ajxjgUk , 
j=0 

where g is a primitive Nth root of unity in the appropriate domain. The 
inverse DWT is 

N-1 

(2.6) xj = (Naj)-I1E Xkgkj 
k=O 

To express the straightforward relationship between the DWT and DFT, we use 
the following notation to represent (2.5) and (2.6) compactly: 

(2.7) X = DWT(N, a)x = DFT(N)ax, 

x = DWT 1 (N, a)X = a- 1 DFT- 1 (N)X. 

Another simple observation is that weighted transforms become precisely the 
DFTs in the degenerate case a = 1, where the signal 1 denotes { 1, 1, . .. , 1 } . 

We denote the traditional cyclic convolution of two length-N signals x, y 
by the signal x * y, whose components are 

(2.8) (x * Y)n Z E XjYk 
j+k=n (mod N) 

We can isolate key parts of this cyclic convolution by defining, for b = 0 or 1, 
the convolutions 

(2.9) (x * y) (b) = E Xy 

j+k=bN+n 

so that 

(2.10) x * y = (x y)(?) + (x * y)( 

We denote the negacyclic convolution referenced in the literature [ 11 ] by x . y, 
defined as 

(2.11) X.y= (x*y)(0) - (x*y)(1). 
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Also of interest is a right-angle convolution [8], for which the coefficient of 
(x * y)(1) is a square root of -I . TLhe weighted transform approach can be 
thought of as a means for introducing general phase factors as coefficients of 
the part (x * y)(1) . 

Note that acyclic convolution, which is the part (x * y)(0), can be obtained 
from the sum of (2.10) and (2.1 1). Similarly, if x, y are both real signals and 
complex arithmetic is used, then the acyclic convolution can be obtained simply 
as the real part of a right-angle convolution (x * y)(0) ? i(x * y)(1) . 

For a constant, length-N nonzero weight signal a understood, we define the 
weighted convolution of two length-N signals x, y to be 

(2.12) x *a y = a-' ((ax)*(ay)). 

In the important cases where the weight signal is generated from a scalar A, 

(2.13) aj = Ai, 

the weighted convolution takes the simple form 

(2.14) X *a y = (x * y)(0) + AN(x * Y)(1). 

Given the forward and inverse DWTs (2.5) and (2.6), the appropriate analog of 
the classical convolution theorem can be derived in a straightforward manner. 
From (2.5), (2.6), and the weighted convolution definition (2.12) one finds 

N-1 

(x*a y)n = (a- )nN-1 E Xk-Lgkn 

(2.15) k=O 

-DWT- 1 (N, a)(XY) 

= a-DFT'-(N) (DFT(N)ax)(DFT(N)ay)], 
the last equality showing explicitly how to compute weighted convolutions via 
existing FFT algorithms for the DFTs. 

3. MULTIPLICATION VIA WEIGHTED CONVOLUTION OF DIGITS 

We require some notation pertaining to digit representations of integers. The 
standard representation of a nonnegative integer x, for some fixed base W, 
involves digits xj, where 

N-1 

(3.1) x= E xjW, 
j=0 

with all digits constrained by 

(3e2) 0 < x < W. 

In many cases, notably when floating-point FFTs are employed, it is advanta- 
geous in practice to adopt a balanced representation, where we assume that W 
is even and for which we demand 

(3.3) - W/2 < XJ<W/2. 
A balanced representatiorn thus involves "bipolar" digits which tend to yield 
reduced errors for the convolutions we intend to perform. In the sense of signal 
processing theory, the balanced representation involves digit signals x which are 



308 RICHARD CRANDALL AND BARRY FAGIN 

in some sense "high-pass filtered," with the filter that converts from constraint 
(3.2) to constraint (3.3) being generally nonlinear. For one thing, the "DC 
component", or mean value of the x signal, is usually significantly smaller in 
balanced representation than in the standard representation. 

Conversion between standard and balanced representation is not difficult. 
To convert from standard to balanced, one may proceed as follows. Starting 
at the least significant digit x0, check whether this digit is as large as W/2. 
If x0 > W/2, replace x0 with x0 - W and increment x1. Then apply this 
"if-subtract-increment" test to x1, and so on, possibly with a final carry into 
one extra balanced digit XN = 1 - 

We shall have occasion to contemplate variable-base representations of the 
form 

N-1 j 

(3.4) x = Z Xjl Wi = Xo +XIWI +X2WiW2 +*, 
j=O i=O 

where W0 = 1 and all other Wi take on values from a finite set of even integers. 
Cumbersome as such representations might appear, the variable-base approach 
has resulted in unprecedented efficiencies for arithmetic modulo large Mersenne 
numbers. We define a standard variable-base representation by the constraint 

(3.5) 0 < x1 < Wj+I, 
and an alternative balanced-variable representation by the constraint 

(3.6) -Wj+1'/2 < xj < WJ+1?/2. 
When calculations are based on floating-point arithmetic, the functions Floor(.), 
Ceiling(.), and Round(.) are important, because various steps of the algorithms 
require integer digits at certain junctures. We define the functions as follows. 
For integers n, 

(3.7) Floor(n) = Ceiling(n) = Round(n) = n. 

Otherwise, for z = n + e, where n is an integer and 0 < e < 1, 

Floor(z) = n, 

(3.8) Ceiling(z) = n + 1, 

Round(z) ={Floor(z +1/2), z > 0 
Ceiling(z-1/2), z<0. 

Note that Floor(.) is not equivalent to the common machine function Trunc(.), 
the latter obtained merely by zeroing the fractional part of the mantissa. For 
example z = -0.6 has Floor(z) = -1, Ceiling(z) = 0, Round(z) = -1, 
Trunc(z) = 0. Inequalities that prove useful for certain weighted convolutiorns 
apply for all nonnegative reals a, b, in the form 

Floor(a) + Floor(b) < Floor(a + b), 
(3.9) Ceiling(a) + Ceiling(b) > Ceiling(a + b). 

The Round(.) function is especially important when floating-point FFTs are 
used for convolution. In pseudocode descriptions we shall denote the round of 
a complex signal as 

(3.10) Round(z) = Round(Re(zj)) + iRound(Im(zj)). 
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Such operations are used to infer correct integer convolution values from com- 
plex floating-point results. 

In many applications of large-integer arithmetic one generally follows a mul- 
tiplication xy by a mod operation. We should mention some known techniques 
for fast calculation of integers (modp) when p has special form, for example 
p = 2q ? 1. In either respective case, z (modp) can be computed rapidly by 
representing z in the form a + b2q and noting z = a - (?b) (modp). One 
simply continues this reduction, which can be effected via shifts and adds alone, 
until z has a sufficiently small number of bits. Similar tricks apply to negation, 
multiplication by powers of two, and so on [7, 15]. As we shall see in ?10, 
general mod operations can be efficiently performed via weighted transforms as 
long as the denominator remains fixed. 

Nomenclature thus established, we can state the central algorithm as follows: 

Algorithm W: weighted convolution algorithm for multiplication of x, y. 
(1) Choose digit representations x, y, together with an appropriate run 

length N and weight signal a. 
(2) Compute X = DWT(N, a)x, and Y = DWT(N, a)y. 
(3) Compute Z = XY. 
(4) Compute z = DWT-1 (N, a)Z. (This is the weighted convolution 

X *a y.) 
(5) Set z = Round(z), if noninteger (e.g., floating-point) FFTs were used. 
(6) Adjust the digits {zn} to the digit representation of choice. 

The various types of multiplication we anticipate (direct, polynomial, Fermat- 
mod, Mersenne-mod, and so on) will differ only in the choices that occur in 
step (1), and in the- digit adjustment, step (6). The steps (2) and (4) require 
O(N log N) arithmetic (word) operations, while the signal multiplication (3), as 
well as the digit adjustment procedures in (5), (6), require only O(N) arithmetic 
operations. 

4. FFT MULTIPLICATION FOR INTEGERS AND POLYNOMIALS 

Herein we review direct FFT methods with which multiplication in a field 
is achieved by cyclic convolution of zero-padded sequences [12]. The signal in 
this case is a = 1. For nonnegative integers x, y we adopt representations 
of the form (3.1) and assume further that the digit sequences {x;}, {yj} are 
zero-padded, in the sense that 

(4.1) x;=yj=0 forj>N/2. 

The integer product xy is thus 
N-1 

(4.2) Xy = E E XjYkWn. 
n=O j+k=n 

Because of the zero-padding, the part (x * y)(l) vanishes, and we may compute 
digits of xy according to 

N-1 

(4.3) xy= (x*y)nWn. 
n=O 
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Thus, multiplication can be effected via cyclic convolution of the x, y signals. 
For integer multiplication, Algorithm W may thus start with the specific para- 
phrase: 

(1) Represent x, y in base W, with the digits of x, y zero-padded such 
that xj = yj = 0 for i > N/2, with run length N appropriate to the available 
FFT routines, and choose a = i. 

Note that the new digits zn = (x * y)n may violate the representation's digit 
constraint, so that some carry operations may be required to adjust (4.3) to a 
legal repre;,entation, as in step (6) of Aigorithm W. This adjustment of digits is 
especially important when repeated multiplication is contemplated, i.e., when 
one wishes to loop back to step (1) many times. 

For multiplication of two polynomials x, y, each with integer coefficients, 
everything proceeds as in the integer multiplication case, except that less work 
is needed: step (6) is not performed. This is because, after step (5), the digits 
of z, are in fact the correct integer coefficients of the polynomial product. 

For multiplication of two polynomials with all coefficients interpreted (modp) 
one would paraphrase step (6) as: 

(6) Set z, =- z, (mod p) for n = 0, 1, . . ., deg(x) + deg(y) . 
A critical issue in the implementation of large-integer direct FFT multipli- 

cation is the choice of FFT algorithm. Define a real-signal FFT as one that 
exploits the fact of all original signal elements being real, and a real-result in- 
verse FFT as one that exploits the fact of all final signal elements being real. In 
practice one has options to which we next devote a few paragraphs. 

For N a power of two, use a real-signal FFT in step (2) of Algorithm W, 
and a real-result inverse FFT in step (4); for example, the very efficient split- 
radix forward and inverse FFTs of Sorensen et al. [19] achieve in practice more 
than twice the speed of their conrventional complex-signal Cooley-Tiikey coun- 
terparts. Another common technique of taking the FFT of two real signals at 
once, using the complex signal {Xj + iyj}, gives better overall performance 
than the employment of two separate complex FFTs, but in our experience this 
approach is consistently slower than the split-radix real-signal method. 

For N again a power of two, use right-angle convolution to avoid zero- 
padding at the expense of invoking a complex EFT. We observe from (2.14) that 
for weighting constant A = elil(2N) the desired product can be obtained as the 
acyclic (real) part of the weighted convoiution, plus WN times the imaginary 
part. This approach is of interest when special memory constraints prevent 
zero-padding, or when an especially efficient complex FFT routine is available. 

For N not a power of two, but rather a produict of small primes to powers, a 
Prime Factor Algorithm (PFA) may be suitable. Some striking successes in large- 
integer arithmetic have been achieved in this way [4]. In the present treatment 
we concentrate throughout on N a power of two; in fact, it is the special feature 
of the weighted transform approach that relatively small run lengths N = 2m 
can often be used. 

Our implementations of direct FFT multiplication, whether in standard or 
balanced representation, use word size W = 216. Even though our machines 
possess means for arithmetic on 32- or 48-bit integers, the choice W = 216 iS 
the largest reasonable word size for the simple reason that convolution errors 
attendant to floating-point methods must be kept under control. The problem 
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of bounding convolution errors is extremely difficult. Though some interesting 
general theorems are known on the subject of FFT errors [3], the general results 
do not always give a fair picture of the errors obtained in practice. One problem 
is the fact of more than one source of error; for example, one suffers from both 
roundoff error and errors in the representations of sin and cos. Since convo- 
lution errors are not completely understood, some basic emrpirical observations 
are of interest. When the weighted convolution is pure real, then in step (5) of 
Algorithm W it is certainly necessary that an error bound of the form 

(4.4) en = IRe(zn) - (X *a Y)nI < 1/2 
hold, lest the operation of Round(.) possibly give incorrect convolution values. 
For floating-point arithmetic with Q-bit mantissa resolution, on the assumption 
that sin(.) and cos(.) mantissas be correct to Q - 1 bits, our numerical work 
suggests that some bound of the form 
(4.5) en < c2-QW2 N3/2logN 
might hold for a universal constant c 1 when standard digit representation 
is used. Furthermore, when balanced representation is used, it appears that a 
much better bound, better by a factor of vN, may hold in the form 
(4.6) en < c'2-Q W2Nlog N. 
Again, these bounds are conjectural, and based only on a finite set of experi- 
ments. It is reasonable, though, that the error bound for balanced representation 
be tighter, because the balanced digits should in some average sense behave as 
distributed bipolar values, giving rise to some error cancellation in the final 
convolution. In fact, we found that on a Cray YMP, with floating-point FFT 
routines involving 48-bit floating-point numbers, the standard representation is 
useless (i.e., en exceeds 0.5 in some cases) for W = 216 and multiplicands hav- 
ing more than 218 bits. But balanced representation on this machine appears 
to allow accurate multiplication with 2000000 bits per multiplicand. For 64-bit 
floating-point mantissa resolution and fixed word size W = 216, direct FFT 
multiplication appears sufficiently accurate for general integers x, y having up 
to 221 bits each in standard representation. When balanced representation is 
used, the 64-bit floating-point machines can perform this multiplication on inte- 
gers having up to 224 bits. In spite of the lack of rigorous results concerning the 
conjectures (4.5), (4.6), it appears that programs should always avoid standard 
representation when such avoidance is possible. 

The fact of flioating-point convolution errors is unfortunate, and may be dis- 
comforting to the reader. There are at least two sources of relief on this issue. 
First, in factoring experiments per se, a discovered factor can immediately be 
tested as a divisor, so that floating-point errors in any intermediate stages are ir- 
relevant. Second, there exist errorless, integer convolutions, examples of which 
we discuss in ?8. One approach is to write very fast floating-point routines, in 
this way obtaining results, then checking these results at critical junctures with 
rigorous integer routines. 

Finally, one may drastically increase error margins by doing an error-correc- 
tion side calculation. One may compute, in addition to the main convolution, 
the same convolution (mod B), where B is some convenient small integer such 
as 256, and in this way relax the constraint (4.4) to 



312 RICHARD CRANDALL AND BARRY FAGIN 

This method works because the word size B, when significantly less than W, 
gives rise to much less error, as expected on the basis of a heuristic relation 
(4.5) or (4.6). In this way one may use the components of a sufficiently reliable 
(mod B)-convolution to force the values of the less reliable components of the 
main convolution. 

5. FERMAT NUMBERS AND NEGACYCLIC CONVOLUTION 

Here we describe in detail a situation, discovered in essence by Sch6nhage 
and Strassen [16], in which negacyclic convolution may be used to avoid zero- 
padding of digits, resulting in a halving of the run length that was required by 
the direct FFT method. The Fermat numbers are defined by 

(5.1) F = 22m+1. 

Multiplication modulo Fm may be effected as follows. Adopt a fixed base W 
which divides Fm - 1, say W = 22 n/N. Represent integers x, y (mod Fm), 
neither of which = -1 (mod Fm), as in (4.1). It is assumed that the extraneous 
cases where some key integer = - 1 (mod Fm) can be handled by simple means. 
Note that we shall not be zero-padding the signals in the present case. Indeed, 
since WN = -1 (mod Fm), it follows that 

N-1 

(5.2) Xy=E(X.y)nWn (modFm). 
n=O 

In other words, the digits of xy (mod Fm) can be taken to be components of 
the negacyclic convolution of x and y as defined by (2.1 1). As before in the 
direct FFT method, a reduction of these digits to the current representation of 
choice it usually, required. 

The weighted transform concept comes into play as follows. Set aj = Ai, 
where A is an Nth root of - 1. When floating-point FFTs are to be used, 
A = e?il/N will suffice. The first step in Algorithm W appropriate to this 
negacyclic case is: 

(1) Choose a base W = 22m/N, where N will be the run length, and define the 
signal a = {Ai}, where A = e-i/N . Represent x, y in base W, zero-padding 
only to N digits inclusive. 

One might attempt to argue that the weighted transform approach gives no 
net advantage, by observing that the direct FFT method of ?4 involved zero- 
padding, but allowed real-signal FFTs, whereas a transform such as 

N-1 

(5.3) Xk = E xje- ii/Ne-27iik/N 
j=O 

though enjoying half the run length, is nevertheless a complex-signal transform. 
The- avoidance of zero-padding, this argument goes, would be offset by the need 
for complex transforms in place of the faster real-signal transforms. This argu- 
ment fails, for the simple reason that transforms of the type (5.3) can actually 
be effected in terms of real-signal transforms of length N, with only a few 
extra operations that do not affect the asymptotic run time. Define a special 
transform 

N-1 

(5.4) = 2 E3 xj cos(7rj/N)e22ik/N, 
j=O 
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which can, after O(N) cos(.) multiplications, be computed as a real-signal FFT. 
It should be mentioned that this special transform is, strictly speaking, not a 
weighted transform because the weight signal {cos(7rj/N)} is not invertible. 
Noting the identity 

(5.5) Xk =Xk + Xk- 

and the fortuitous symmetry 

(5.6) Xk = X>-k- 

we may obtain XO directly from (5.3), then use the recursion 

(5.7) X1 =X1 - XO, X2 =X2 -Xl, .... 

so that, indeed, the DWT (5.3) can be obtained from a real-signal FFT and 
O(N) extra operations. In fact, for actual multiplication we only need compute 
Xk and Yk for 0 < k < N/2, because the symmetry (5.6) determines the rest 
of the components. Similarly for the final, inverse transform, we can compute 
the negacyclic components 

N-1 

(5.8) Zn = (x * Y)n = e27in/NN 1 E Xk Yke?+27ikn/N 
k=O 

via a real-result inverse FFT: 
N-1 

(5.9) (2 cos(7rn/N))zn = N1 E (XkYk + Xk-l Ykl)e+27t1kn/N 
k=O 

when n 0 N/2, and obtain the single missing component from the side calcu- 
lation 

N12-1 

(5.10) ZN/2 = -2N-1 Jm(XkYk)(_I)k. 
k=O 

In summary, multiplication modulo Fermat numbers may be effected without 
zero-padding, with a genuine gain, in the form of halved run length, through 
the use of real-signal FFTs and real-result inverse FFTs. 

It is even possible to cut down the run length to 1/4 of that required for 
the direct FFT approach. In this case complex-signal FFTs must be used, but 
the method is called for in situations where, for example, a very fast complex 
FFT is available (more precisely, when the add-carry operations are relatively 
expensive in comparison to the FFTs). As before, let the fixed word length be 
W = 22 /N, but now represent an integer x by a complex equivalent, 

N/2-1 

(5.11) x' = E (Xj + iXj+N/2)Wi, 
j=0 

and employ an analogous representation for an integer y. Define a new run 
length N' = N/2, and posit a constant length-N' signal a = {AJI}, where 
AN' - i. It is straightforward to show that 

N'-1 

(5.12) X'y/ = Z (Xf*a Y)nWn (mod Fm), 
n=O 
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where the weighted convolution is, in view of the present definition of A, a 
right-angle convolution: 

(5.13) x/ *a y -(x/ * yt)(0) + i(x' * y/)(1). 

Algorithm W for this case requires step (1) to read: 
(l) Choose a base W - 22m/N, where N' = N/2 will be the run length, aind 

define the signal a = {Ai}, where A = e i/(2N'). Represent x, y as having N' 
complex digits, each in base W, as in (5.1 1), zero-padding only to N' complex 
digits inclusive. 

It should be kept in mind that in steps (5) and (6) the digits {fz, } are generally 
complex. 

In summary, this algorithm has 1/4 the run length of the direct FFT method, 
but necessarily involves complex FFTs. We have found this approach to be 
effective on Cray machines, for which vectorized, optimized complex FFTs are 
available, and for which the carry adjustments on step (6) are difficult to vec- 
torize. 

6. MERSENNE NUMBERS AND IRRATIONAL BASES 

For p = 2q - 1, we consider multiplication (mod p). An interesting obser- 
vation is that binary multiplication of two integers x, y (modp) is equivalent 
to cyclic convolution of bits. If we adopt a binary representation 

q-1 

(6.1) x = Ex2i2, 
j=0 

and an analogous form for y, then, because of the fact that 2q = i (mod p), 

q-1 

(6.2) xy = -(x*y),2n (mod p). 
n=O 

Elegant though this equivalence of bitwise cyclic convolution and multiplication 
(modp) may be, there are two reasons why the scheme is impractical. First, 
most machines are relatively inefficient in performing one-bit multiplication; 
and second, any FFT methods for the convolution must involve length-q sig- 
nals. In many interesting cases, q is prime, and although prime-length FFTs 
can be performed via established methods, such FFTs for large q are not gener- 
ally competitive with fast transforms for comparable but highly composite run 
lengths. 

We have been able to circumvent these drawbacks of bitwise convolution by 
employing weighted transforms to perform arithmetic with respect to irrational 
bases. The new method is based on the observation that, if we could generalize 
the representation (6.1) to 

N-1 

(6.3) X =Exj2qiN 
j=O 

with an analogous representation for y, then in spite of the general irrational- 
ity of the digits xj, yj we can write xy (modp) again in terms of a cyclic 
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convolution, this time of length N: 

N-1 

(6.4) xy =E(x * y),2qn/N (modp). 

Of course, we cannot normally handle irrational representations exactly by com- 
puter, but weighted transforms and floating-point arithmetic can be brought to 
bear in order to compute convolu^tions such as (6.4) with sufficient accuracy. 
We adopt an integer representation, but with variable base as in (3.4), 

N-1 

( 6. 5 ) x- S Xj 2Ceiling(qj/N) 

j=0 

The word sizes are Wj = 2b1, with the number of bits allocated for digit xj1 
being 

(6.6) bj= Ceiling(qj/N) - Ceiling(q(j - 1)/N). 

From (3.9) it follows that for given q and run length N the bj take on at 
most two possible values, namely Ceiling(q/N) or Floor(q/N). An appropriate 
weighted convolution proceeds on the basis of the constant signal a defined by 

(6.7) a1 - 2Ceiling(qj/N)-qj/N 

which in practice will be approximated by a floating-point number always lying 
in the interval [1, 2). Assuming the representation (6.5) for an integer x, and 
tlle analogous representation for an integer y, we have 

N-1 

xy= E ((ax) * (ay))n2qnlN (modp) 
(6.8) n=O 

N-1 

= E (x *a Y)2Cei1ing(qn/N) (modp). 
n=O 

Thus, the digits of the weighted convolution X*a y will serve in the variable-base 
representation of xy (mod p) . The reason for using the Ceiling(.) function and 
the particular definition (6.7) for the components of a now becomes evident, 
as we observe that each convolution component (x *a Y)n in (6.8) must be an 
integer. Indeed, this component always takes the form 

( 6. 9) XjYk 2Ceiling(q j/N)+Ceiling(qk/N)-Ceiling(qn/N) 

with j + k = n (mod N). By (3.9) it follows that the exponent of 2 in (6.9) is 
always 0 or 1. This means that our usual rounding techniques can be used to 
ascertain exact integer values for the weighted convolution, assuming that the 
floating-point arithmetic is sufficiently precise. 

Algorithm W for multiplication of integers x, y (mod p), where p - 2q _ 1, 
via weighted convolution of this type may now proceed with a specific step (1): 

(1) Choose run length N > q and establish bit-sizes bj for digits according 
to (6.6). Represent x = {xj}, y = {yj} according to (6.5), zero-padding only to 
N digits inclusive. Compute the components of the weight signal a according 
to (6.7). 
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The digit representations rmay be either standard-variable or balanced-variable 
type. One simply sticks to a consistent constraint (3.5) or (3.6) in steps (1) and 
(6). Our most powerful Mersenne-mod routines use balanced-variable repre- 
sentation to cut down the overall convolution errors. 

Since the variable-base representations are not common ones for program- 
mers, a brief worked example of the multiplication algorithm is in order. Let 

(6.10) q=37, p-237-1, N=4. 

The bit-sizes from (6.6) are 

(6.11) {bj}={10, 9, 9, 9}. 

Let us use the algorithm to square the number x = 78314567209 (modp). In 
the first step of Algorithm W we determine 

(6.12) x= {553, 93, 381, 291}. 

Note, for example, that 553 is indeed a 10-bit number and that the other three 
digits are 9-bit numbers. The constant signal is computed as 

(6.13) a= {1, 23/4, 21/2, 2/4}. 

After step (4) we find a typical floating-point representation of the z signal: 

(6.14) z= {704383., 324600., 523365.0000000001, 463577.9999999999}. 

The rounding in step (5) gives us integer digits for the convolution components 
in (6.8). Adjustment for proper constraints on digit sizes are to follow, but we 
can see that the- weighted convolution has given the correct product (modp). 
Indeed, it is easy to check that 
(6.15) 
783145672092 

= 704383 + 324600 * 210 + 523365 * 2'9 + 463578 * 228 (mod 2 - 1). 

7. CHINESE REMAINDER METHODS 

The weighted convolutions of the last two sections, suitable for specific 
Fermat- or Mersenne-mod cases, can sometimes be used together to enhance 
general multiplication routines. Assume, for example, that each of x, y has 
2n + s digits in a fixed, even base W, with 0 < s < 2mn- . The required 
zero-padding of the direct FFT method of ?4, for power-of-two run length N, 
implies a minimum run length N = 2m+2. That is, each of x, y must be zero- 
padded to length 2m+l, and further zero-padded to run length 2m+2 . Because 
of the assumed constraint on s, we have the option of using the methods of 
??5, 6 respectively, to compute two integers 

(7.1) u=xy (mod W2m+' + 1), v =xy (mod W2M-1), 

and, because the product xy has at most 3 * 2m nontrivial digits, to reconstruct 
the exact product using (7.1) and the Chinese Remainder Theorem (CRT). Since 
W is even, the two modulus bases in (7.1) are relatively prime, whence 

(7.2) 2xy = u + v + W2`1 (v - u) (mod( W2m+1 + 1)(W2m _ 1)). 
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The mod operation in (7.2) may be effected using the same principles that allow 
fast Fermat- and Mersenne-mod arithmetic; namely, a few shift and add oper- 
ations generally suffice to perform the mod. Thus, for example, two 1500-digit 
base-W integers may be multiplied using a length-2048 negacyclic convolution 
(for u) and a length-1024 cyclic convolution (for v). This amounts to a no- 
ticeable speed improvement over the direct FFT method, which would require 
a length-4096 cyclic convolution. 

A different, "microscopic" CRT approach is to attempt parallelism by com- 
puting weighted convolution components modulo distinct primes Pi. One might 
use a separate processor for each Pi. One might further demand that each Pi 
possesses a primitive root gi of order N, and also that each Pi admits of 
a suitable weight signal ai; then calculate a weighted transform (2.5) mod- 
ulo each pi. Weighted convolution elements from (2.15) will then be known 
modulo each respective pi, and can be reconstructed efficiently using known 
"pre-conditioning" algorithms for the CRT calculation [1]. To achieve unam- 
biguous reconstruction, one must use enough primes so that 7rpi exceeds the 
largest possible convolution component. Component bounds are discussed in 
the next section. 

8. NUMBER-THEORETIC WEIGHTED TRANSFORMS 

Traditional number-theoretic transforms, which by avoiding floating-point 
arithmetic provide exact integer convolutions, can be given weighted counter- 
parts. Let integers x, y be expressed in balanced representations of the type 
(3.1), so that constraint (3.2) applies. Both cyclic and negacyclic convolutions 
then satisfy the inequality 

(8.1) I(x *a Y)nl < N W2/4 

for each n = 0, 1, .. , N - 1 . Consider number-theoretic weighted transforms 
(2.5) based on arithmetic over a finite commutative ring R with unity. A 
practical special case is 

N-1 

(8.2) Xk = Z xjAJgjk, 

j=O 

where A is invertible in R and g is a primitive Nth root of unity in R. We 
may take A = 1 for the cyclic case, or A is a primitive Nth root of (-1) for 
the negacyclic case. In this negacyclic case it suffices to use g = A2 . When we 
use a finite field R = GF(p) for a prime p sufficiently large that 

(8.3) NW2/4 < p12, 
then weighted transforms of the type (8.2), with all arithmetic performed 
(modp), can be used to determine unambiguously the (possibly bipolar) con- 
volution elements. Bounds sharper than (8.3) may be derived, especially if 
zero-padding of digits or special symmetries are taken into account. 

A popular choice [8, 9] is p = Fm = 22m + 1. The resulting Fermat Number 
Transform (FNT) has attractive features but one major drawback. The advan- 
tages of the FNT lie in one's ability to perform (8.2) (with the generating scalar 
A equal to a power of 2) on the basis of shift and add operations alone, while 
the drawback is that maximum allowable FNT run lengths are quite limited. 
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An FNT example runs as follows. Start with W = 216, N = 64, so that cyclic 
or negacyclic convolution are desired for x, y each having at most 1024 bits. 
Since NW2 = 238, it suffices by (8.3) to choose p = F6 = 264 + 1. Choose 
A = 2, which is a 64th root of (-1) (modF6), and g = 4. Then weighted 
transforms 
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(8.4) Xk = xj24j (modF6) 
j=O 

may be used to compute negacyclic convolutions appropriate to original integers 
x, y having at most 1024 bits each. Clearly, (8.4) or its even simpler cyclic 
analog can be effected via shift, add, and Fermat-mod operations without any 
explicit multiplication required. 

Because of the restrictions on FNT run length, it is somewhat difficult to 
perform exact multiplication of integers having, say, hundreds of thousands of 
bits in this way. However, there are multidimensional techniques that circum- 
vent this problem somewhat [6, 9]. Luckily, there are other options. Consider 
what we shall call Galois Transforms, for which the expressions such as (8.2) 
are to be evaluated in GF(p2), where p = 2q- 1 is a Mersenne prime. These 
transforms [13, 15] take due advantage of two facts. First, for arithmetic in 
GF(p2) we can assume that every field element is a + bi, with all real and 
imaginary components reduced (modp) at every stage. Second, the order of 
the multiplicative group is p2 _ 1 = (p + 1) (p - 1) , which is divisible by 2q+1 
thus allowing in practice enormous power-of-two run lengths. 

Let h be a primitive multiplicative 2q+1th root of 1 in GF(p2). For r < q 
let 

(8.5) N = 2, A = h(P- 1)2-l , g = A2. 

Since AN = -1 , length-N cyclic (where A is simply omitted from (8.2)) or 
negacylic digit convolution may proceed, under the constraint (8.3). If r is 
strictly less than q, then the choices 

(8.6) N = 2r A A = h(P-I)2q-r-2 g = A4 

allow right-angle convolution, because AN is now a square root of (-1). In 
this case the acyclic convolution is just the real part of the weighted convolution. 

By a theorem of Creutzburg and Tasche [5] one can obtain closed-form ex- 
pressions for primitive roots in GF(p2). For example, 

(8.7) h = 2 + (-3)2q2i 

is always a primitive multiplicative 2q+ 1th root of 1. From (8.5) we can attempt 
run lengths as powers of two up through 2q for cyclic or negacyclic convolution. 
An interesting further observation is that gg* = 1 (modp), so that the afore- 
mentioned techniques for real-signal and real-result transforms may be applied 
to the weighted cases (8.2), in view of appropriate symmetries of X. 

A useful example of Galois Transform applications arises when p is the 
Mersenne prime 261 - 1 . For fixed base W - 216, one may, by virtue of (8.3), 
contemplate run lengths up to the impressive size of N= - 27 digits. Programs 
for weighted convolution can be realized by starting with a single primitive root 
such as 

(8r8) h - 2147483648 + 1033321771269002680 i, 
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then using relations (8.5) or (8.6) to handle specific run lengths 2r. Say that we 
wish to multiply two integers, each having < 1 million bits. We may proceed 
with right-angle convolutions as follows. Make, according to (8.6), the choices 

N -216, 

(8.9) A - h(P-)243 - 1973234539278172120+ 1244201103777839971 i, 

g = A4 = 1510466207055935382 + 120042544849731353 i, 

for which one may verify that AN - i and thus gN- 1 in GF(p2). Then 
(8.2) and the weighted convolution formula (2.15) can be used to compute the 
nth digit of xy as Re((x*a Y)n) for n < N, and Im((x*a Y)n-N) for n > N. 
Though complex FFTs with 64-by-64 bit high-precision multiplies are called for 
in this example, it is guaranteed by (8.3) that the multiplication is exact, devoid 
of the errors attendant to floating-point methods. 

9. APPLICATIONS TO FACTORIZATION METHODS 

The weighted transform approach can sometimes be used to enhance modern 
factorization algorithms when the number N to be factored (not to be confused 
with run length in this section) is sufficiently large. The idea is to use transform 
methods to resolve certain algebraic forms. By storing precoinputed transforms, 
one may effectively reduce the total number of required multiplications for these 
forms. 

A first example is a calculation that occurs in most implementations of the 
"second stage" of the Pollard (p - 1) Method or the Elliptic Curve Method 
(ECM) [10]. One accumulates products of the form 

(9.1) r= fl(x1 -xj) (modN), 
i<j 

where integers xI, x2, ..., xn have been stored, and computes GCD(r, N), 
hoping for a factor of N. If one computes r by successively calling a DWT- 
based general multiply routine, then (n - 2)(n + 1)/2 multiplies, hence 
3(n - 2)(n + 1)/2 transforms, will be required. But by storing transforms 
appropriately, we can cut the asymptotic 3n2/2 transform count down to 
n2, as follows. 

Algorithm for computing products (9.1) by storing transforms. 
(1) Let xi denote the signal corresponding to the digits of integer xl, and 

compute and store signals Xi = DWT(N, a)xi, where a is appropriate to the 
problem of multiplication (mod N). 

(2) Set r = 1. 
(3) To introduce a new term (xi - xj) into the product for r, set r = 

DWT-'(N, a)[(X, - Xj)(DWT(N, a)r)], and recover r from r by adjusting to 
the representation of choice (mod N). Repeat this step (3) until all terms are 
introduced into the product. 

It is not hard to see that (9.1) can be computed in this way, with a total of 
n2 - 3 DWTs (inverse transforms included), for an overall gain of 3/2 in the 
asymptotic run time. 
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As a second example, we analyze some ECM arithmetic. The inversionless 
parametrization of ECM due to Montgomery [10] uses the elliptic curve 

(9.2) By2 - x3 + Ax2 + x (mod N). 

One assumes an initial rational point (x, y) = (ul/vl, Yl), where Yi is not 
needed in the calculation, and uses such formulae as 

(9.3) Um+n = Vmn(UmUn - VmVn )2 (mod N), 

Vm+n Um-n(Umvn - VmUn)2 (rmod N) 

to obtain the x-coordinate of (m+n)(uI/v 5 Yi) when m 7 n, with a different 
(doubling) formula that applies when m = n. In this approach one computes 
certain multiples k(ul/vl, Yi) and continually checks GCD(vk, N), hoping 
for a factor of N. As Montgomery points out, the computation (9.3) requires 
8 multiplications and some additions. The multiplications would involve 24 
DWTs if a general weighted convolution multipiication routine were system- 
atically called. If we exploit the fact that squares require only 2 DWTs, then 
(9.3) will require 22 transforms. This cost of 22 transforms can be reduced 
further, in the following way. First, compute four transforms DWT(N, a)um, 
DWT(N, a)un, DWT(N, a)vm, DWT(N, a)vn . Then each square in (9.3) can 
be computed with three transforms, and, because the transforms of um-n, Vm-n 
can have been stored, four more transforms will yield the desired final values 
in (9.3). Thus, a total of 14 DWTs can be employed to resolve (9.3). In this 
wav, ECM arithmetic can be sped up by factors > 3/2. 

As intimated in ? 1, these methods for improving factorization times will 
provide genuine improvement when N has some thousands of binary bits, the 
precise magnitude of N at which weighted transform methods prevail being 
machine-dependent. 

10. GENERALIZED FAST MOD 

In this section we show that transform methods can be used to compute mod 
operations, for sufficiently large fixed denominator N, in at most twice the 
time required for the general multiplication of two (mod N) integers. Such a 
situation obtains, for example, when N is a number to be factored, and each 
mod operation x (mod N) proceeds for the fixed N, with 0 < x < N2 . The 
mod problem can be reduced to successive evaluations of Floor(x/N). Given 
a Floor(.) evaluation, one may perform mod operations simply according to 

(10.1) x (mod N) = x - N Floor(x/N). 

The idea is to compute and store a kind of reciprocal of the fixed denominator 
N. Let 2b > N2 and define c = Ceiling(2b/N) = 2b/N + e, where 0 < e < 1. 
Then 

(10.2) xc/2b = x/N + xe/2b, 

from which it follows that 

(10.3) Floor(x/N) = Floor(xc/2b) - d 

where d = 0 or 1. Thus, a mod operation may be performed using 

(10.4) x (mod N) = x - NFloor(xc/2b) + dN. 
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In this way the generalized mod operation is brought down to multiplications 
xc, simple bit-shifting, and a multiplication by N, with a trivial adjustment 
required to determine whether d = 0 or 1. The appeal of this approach is that 
transforms of the digits of N and of c can be determined just once. 

Algorithm for computing successive values x (mod N) for fixed N, 0 < x < 
N2 . 

(1) Choose b such that 2b > N2, and compute c = Ceiling(2b /N), for 
example by a Newton method. Compute and store a transform C of the digits 
of c, and a transform N of the digits of N. 

(2) For each successive x, compute a transform X of the digits of x; then 
use C and an inverse transform to determine xc and thus z = Floor(xc/2b) . 

(3) Obtain the transform Z of the digits of z, and use this with the N- 
transform to determine x = x - Nz. 

(4) (Determination of d) If x < 0, set x = x + N. 

Let us assume, as in ?4, that general FFT multiplication of two (mod N) 
integers takes asymptotic time 3T, where T is the time for one relevant trans- 
form. The two transforms in step (2) will consume a total time of 4T, since 
x contains about twice as many digits as does N. But in step (3), there will 
be two transforms each taking time T. Thus the algorithm should require ap- 
proximate time 6T, amounting to twice the time for a general multiplication. 
In some situations the CRT technique of ?7 can be used to further reduce the 
time in step (2), since c will usually have about half as many digits as does x. 

11. RESULTS TO DATE 

In this final section we describe numerical results obtained by the authors 
and collaborators. Some of these results are merely empirical data, intended to 
aid future researchers in checking methods and programs. 

(1) Our implementation of direct FFT multiplication for general integers, 
on a 68040-based NeXTstation, surpasses the efficiency of straightforward 
"grammar-school" multiplication when the magnitude of (roughly equal) in- 
tegers to be multiplied crosses the region of - 5000 bits. When arithmetic 
is to proceed modulo Fermat or Mersenne numbers, the crossover occurs at 
approximately 2000 bits per multiplicand, because of the advantages of DWT 
methods. 

(2) The reader may have interest in an empirical assessment of the improve- 
ment to be realized with balanced digit representations. We computed the 
floating-point convolution errors for random squares (mod 2524287 - 1), as one 
might do to decide whether M524287 is prime. On a 64-bit mantissa machine, 
using the direct method with zero-padding, we found that the error en of (4.4) 
has a typical value of 0.01 for standard representation, and 0.0001 for balanced 
representation. 

(3) Methods described herein, together with the Elliptic Curve Method 
(ECM), enabled us to find two 19-digit factors of F13 = 223 + 1, both veri- 
fied by Wagstaff [20]. It is now known that 

F13 = 2710954639361 * 2663848877152141313 * 3603109844542291969 * c, 

where c is a 2417-digit composite. 
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(4) Implementation of transform multiplication and Mersenne-mod arith- 
metic has enabled us, using variants of the Pollard (p - 1) method, to determine 
factors 

3085953375452873 of M320213 = 2320213 - 1, 

34013668352159 of M500113 = 2500113 1, 

13364077516908463 of M500249 = 2500249 - 1. 

(5) Using FFT multiplication and balanced digit representation for polyno- 
mial multiplication (modp), Buhler et al. [2] found all irregular prime pairs 
(p, 2k) for all primes < 106. The data establish the truth of Fermat's "Last 
Theorem" for all exponents less than one million. The method involves the 
polynomial multiplication described in ?3, together with a technique for resolv- 
ing Bernoulli numbers (modp) by reciprocating huge polynomials (modp). 
Error-correction techniques, used to augment floating-point transforms with 
B = 65536 in (4.7), proved sufficient to settle regularity criteria for even larger 
primes p 107; for example, it is now known that 8388013 and 8388019 
are regular primes, with each case requiring about 2 CPU hours on a 68040- 
based NeXTstation. The irregularity calculations are now being pressed in a 
systematic way for primes up to four million. 

(6) In attempts to discover new Mersenne primes, a network group [18] has 
employed various DFT and DWT methods. In particular, using the DWT ap- 
proach of ?6, one may compute random squares x2 (modp), where p is the 
Slowinski prime 2216091 - 1, in CPU times: 

I second, 68040 NeXTstation, 
0.07 second, Connection Machine 8K, 
0.02 second, Cray YMP, 

whereas the less efficient direct FFT method takes for example 3 seconds on 
the NeXTstation and 0.3 seconds on the Connection Machine. The factor 
of 3 or 4 improvement for the weighted transform approach is due primarily to 
the automatic gain of 2 arising from the halving of the requisite run length of 
the internal FFTs. No new Mersenne primes have been found as of this writ- 
ing, although the entire region 430000 < q < 524288 has been systematically 
resolved (no new Mersenne exponents were found). 

(7) The current largest explicit prime, 2756839- 1 , recently found by Slowinski 
and Gage [1 7] was verified by D. Smitley, J. Doenias, and one of the authors 
(REC) as indeed prime, in March 1992, at the request of the original discoverers. 

At Slowinski's request, a new, even larger prime was verified, using DWT 
methods, by Doenias and Crandall; said prime to be announced. 

(8) Whether the twenty-second Fermat Number F22 is prime is a question 
that is definitely accessible on machines of today, on the basis of the Fermat- 
mod techniques herein. We have programmed the appropriate Pepin test, in 
which about 222 squares must be performed (modF22). We find that Cray 
machines perform a typical such square in less than 1 second, even though we 
found the error-correction technique of ?3 necessary. The entire primality test 
for F22 will consume roughly 600 CPU hours-not an unreasonable amount 
of time. We have not performed a full run on F22, but at this point the issue 
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is plainly that of availability of machine cycles. We note that the composite 
character of F20 has been settled by direct FFT methods [21]. 
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